Kawa, the Java-based Scheme system

19 November 2003

Per Bothner

Chapter 1: Features 1

Kawa is a Scheme environment, written in Java, and that compiles Scheme code into
Java byte-codes.

This documents version 1.7.90, updated 19 November 2003.
See the summary of recent changes (http://www.gnu.org/software/kawa/NEWS).

The author of Kawa is Per Bothner (http://www.bothner.com/per/) per@bothner . com.
Kawa is a re-write of Kawa 0.2, which was written by R. Alexander Milowski alex@milowski. com.

The Kawa home page (which is currently just an on-line version of this document) is
http://www.gnu.org/software/kawa/.

The Scheme repository (http://www.cs.indiana.edu/scheme-repository/home.html)
has various useful information on Scheme. but it is not very actively updated. A new repos-
itory has been started at www.schemers.org (http://www.schemers.org/). It includes
pointer to an online copy of R5RS (http://www.schemers.org/Documents/Standards/).

A nice quick introduction to Scheme can be found in Greg Badros’s lecture notes
(http://www.cs.washington.edu/education/courses/341/99su/lectures/scheme/).
A more in-depth tutorial which also discusses Scheme implementation is Paul Wilson’s "An
Introduction to Scheme and its Implementation" (http://www.cs.utexas.edu/users/wilson/schintro/
toc.html).

Javadoc generated documentation of the Kawa classes (http://www.gnu.org/software/kawa/api/)
is also available. The packages gnu.bytecode (http://www.gnu.org/software/kawa/api/gnu/bytecode/
gnu.math (http://www.gnu.org/software/kawa/api/gnu/math/package-summary.html),
gnu.lists (http://www.gnu.org/software/kawa/api/gnu/lists/package-summary.html),
gnu.xml (http://www.gnu.org/software/kawa/api/gnu/xml/package-summary.html),
gnu.expr (http://www.gnu.org/software/kawa/api/gnu/expr/package-summary.html),
gnu.mapping (http://www.gnu.org/software/kawa/api/gnu/mapping/package-summary.html),
and gnu.text (http://www.gnu.org/software/kawa/api/gnu/text/package-summary.html),
are used by Kawa, and distributed with it, but may be independently useful.

For a technical overview of Kawa, see these http://www.gnu.org/software/kawa/internals.html.

For copyright information on the software and documentation, see Chapter 17 [License],
page 78.

Kawa is partly sponsored by Brainfood (http://www.brainfood.com/).

This package has nothing to do with the Kawa commercial Java IDE (http://www.macromedia.com/sof:

1 Features

Kawa is a full Scheme implementation. It implements almost all of R5RS (for exceptions
see Chapter 5 [Restrictions|, page 12), plus some extensions. By default, symbols are case
sensitive.

It is completely written in Java. Scheme functions and files are automatically com-
piled into Java byte-codes. Kawa does some optimizations, and the compiled code runs at
reasonable speed.

Kawa uses Unicode internally, and uses the Java facilities to convert files using other
character encodings.

Chapter 2: Getting Kawa 2

Kawa provides the usual read-eval-print loop, as well as batch modes.

Kawa provides a framework for implementing other progressing languages, and comes
with incomplete support for CommonLisp, Emacs Lisp, and EcmaScript, and the draft
XML Query language (http://www.gnu.org/software/qexo/).

Kawa is written in an object-oriented style.

Kawa has builtin pretty-printer support, and fancy formatting.

Kawa supports class-definition facilities, and separately-compiled modules.

Kawa implements the full numeric tower, including infinite-precision rational numbers
and complex numbers. It also supports "quantities" with units, such as 3cm.

You can optionally declare the types of variables.

You can conveniently access Java objects, methods, fields, and classes.

Kawa implements most of the features of the expression language of DSSSL, the Scheme-
derived ISO-standard Document Style Semantics and Specification Language for SGML. Of
the core expression language, the only features missing are character properties, external-
procedure, the time-relationed procedures, and character name escapes in string literals.
Also, Kawa is not generally tail-recursive. From the full expression language, Kawa addition-
ally is missing format-number, format-number-1list, and language objects. Quantities,
keyword values, and the expanded lambda form (with optional and keyword parameters)
are supported.

Kawa implements the following semi-standard SRFIs (Scheme Request for Implementa-
tion (http://srfi.schemers.org/)):

SRFT 0: Feature-based conditional expansion construct, using cond-expand - see Sec-
tion 7.1 [Syntax and conditional compilation], page 17.

SRFI 1: List Library (http://srfi.schemers.org/srfi-1/srfi-1.html), if (require
’list-1ib).

SRFI 4: Homogeneous numeric vector datatypes - see Section 7.11 [Uniform vectors],
page 30..

SRFI 6: Basic String Ports - see Section 8.2 [Ports|, page 41.

SRFI8: receive: Binding to multiple values - see Section 7.2 [Multiple values|, page 18.

SRFI 9: Defining Record Types, using define-record-type - see (undefined) [Record
types], page (undefined).

SRFT 11: Syntax for receiving multiple values, using let-values and let*-value -
see Section 7.2 [Multiple values], page 18.

SRFI 17: Generalized set! - see Section 7.13 [Locations], page 34.

SRFI 23: Error reporting mechanism, using error - see Section 7.12 [Exceptions],
page 33.

SRFI 25: Multi-dimensional Array Primitives - see Section 7.10 [Arrays], page 27.

SRFI 26: Notation for Specializing Parameters without Currying - see Section 7.5
[Procedures], page 21.

SRFI 28: Basic Format Strings - see Section 8.3 [Format|, page 44.
SRFT 30: Nested Multi-line Comments.

Chapter 3: Building and installing Kawa 3

2 Getting Kawa

You can get Kawa sources and binaries from the Kawa ftp site ftp://ftp.gnu.org/pub/gnu/kawa/,
or from a mirror site (http://www.gnu.org/order/ftp.html).

The latest release of the Kawa source code is ftp://ftp.gnu.org/pub/gnu/kawa/kawa-1.7.90.tar.gz.
The same sources are available as a zip file ftp://ftp.gnu. org/pub/gnu/kawa/kawa-1.7.90-src.zip.

A ready-to-run . jar archive of the pre-compiled classes isin ftp://ftp.gnu.org/pub/gnu/kava/kawa-:
You can also check out the very latest version via anonymous cvs.

cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/kawa login
(password is ‘‘anoncvs’’)
cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/kawa co kawa

Once you have it checked out, you can update it with cvs update.

You can also view the cvs archive (http://sources.redhat.com/cgi-bin/cvsweb.cgi/kawa/?cvsroot
via cvsweb.

3 Building and installing Kawa

Before installing Kawa, you must have Java working on your system.

You can compile Kawa from the source distribution. Alternatively, you can install the
pre-compiled binary distribution.

3.1 Getting and running Java

You will need a working Java system. Kawa has been reported to work with JDK from
1.1 through 1.4.x, Kaffe, Symantec Cafe, J++, and GCJ.

The discussion below assumes you are using the Java Developer’s Kit (JDK) from Java-
Soft (Sun). You can download free copies of JDK 1.4 (http://java.sun.com/j2se/1.4/)
for various platforms.

If you want to run Kawa on a Macintosh, see http://home.earthlink.net/%7Eathene/scheme/mackaw:

The program java is the Java interpreter. The program javac is the Java compiler, and
is needed if you want to compile the source release yourself. Both programs must be in your
PATH. If you have the JDK in directory $JDK, and you are using a Bourne-shell compatible
shell (/bin/sh, ksh, bash, and some others) you can set PATH thus:

PATH=$JDK/bin: $PATH
export PATH

3.2 Installing and using the binary distribution

The binary release includes only the binary compiled ‘.class’ versions of the same
‘. java’ source files in the source release. It does not include any documentation, so you
probably want the source release in addition to the binary release. The purpose of the
binary release is just to save you time and trouble of compiling the sources.

Chapter 3: Building and installing Kawa 4

The binary release depends on certain "Java 2" features, such as collections. If you
have an older Java implementation (including JDK 1.1.x) you will need to get the source
distribution.

The binary release comes as a . jar archive ‘kawa-1.7.90. jar’.

You can unzip the archive, or you can use it as is. Assuming the latter, copy the archive
to some suitable location, such as /usr/local/lib/kawa. jar.

Then, before you can actually run Kawa, you need to set CLASSPATH so it includes the
Kawa archive. On Unix, using a Bourne-style shell:

CLASSPATH=/usr/local/lib/kawa.jar
export CLASSPATH

On Windows you need to set classpath in a DOS console. For example:
set classpath=\kawa\kawa-1.7.90.jar

Then to run Kawa do:
java kawa.repl

To run Kawa in a fresh window, you can do:

java kawa.repl -w

3.3 Installing and using the source distribution

The Kawa release normally comes as a gzip-compressed tar file named ‘kawa-1.7.90.tar.gz’.
The same sources are available as a zip file ‘kawa-1.7.90-src.zip’. Two methods are sup-
porting for compiling the Kawa sources; choose whichever is most convenient for you.

One method uses the traditional GNU configure script, followed by running make. This
works well on Unix-like systems, such as GNU/Linux. It does not work well under Microsoft
Windows. (Even when using the CygWin Unix-emulation package there are some problems
with file paths.)

The other method uses the ant command, a Java-based build system released by
Apache’s Jakarta project. This uses an build.xml file in place of Makefiles, and works on
non-Unix systems such as Microsoft Windows. However, the ant method does not support
all the features of the configure+make method.

3.3.1 Build Kawa using configure and make

In your build directory do:

tar xzf kawa-1.7.90.tar.gz
cd kawa-1.7.90

Then you must configure the sources. This you can do the same way you configure most
other GNU software. Normally you can just run the configure script with no arguments:

./configure

This will specify that a later make install will install the compiled ‘.class’ files
into /usr/local/share/java. If you want them to be installed someplace else, such as
$PREFIX/share/java, then specify that when you run configure:

Chapter 3: Building and installing Kawa 5

./configure --prefix $PREFIX

If you have the GNU ‘readline’ library installed, you might try adding the ‘--enable-kawa-frontend’
flag. This will build the ‘kawa’ front-end program, which provides input-line editing and
an input history. You can get ‘readline’ from archives of GNU programs, including
ftp://wuw.gnu.org/.

If you have Swing installed, and want to use JEmacs (Emacs in Java), also pass the
--with-swing flag to configure.

If you have installed Kawa before, make sure your CLASSPATH does not include old
versions of Kawa, or other classes that may conflict with the new ones.

If you use a very old or bare-bones Java implementation that not have certain "Java
2" features (such as java.util.List, java.lang.ref, or ThreadLocal) then you need to
convert the Kawa source-code so it doesn’t depend on those features. You do this with the
following command:

make select-javal

Most people should not need to do this. (You don’t need to if you're using GCJ, even
though it doesn’t implement all of Java 2.) (If you need to convert the code back to the
default, do: make select-java2.)

Then you need to compile all the .java source files. Just run make:
make

This assumes that ‘java’ and ‘javac’ are the java interpreter and compiler, respectively.
For example, if you are using the Kaffe Java interpreter, you need to instead say:

make JAVA=kaffe
You can now test the system by running Kawa in place:
java kawa.repl
or you can run the test suite:
make check
or you can install the compiled files:
make install

This will install your classes into $PREFIX/share/java (and its sub-directories). Here
$PREFIX is the directory you specified to configure with the ——prefix option, or /usr/local
if you did not specify a —-prefix option.
To use the installed files, you need to set CLASSPATH so that $PREFIX/share/java/kawa. jar
is in the path:
CLASSPATH=$PREFIX/share/java/kawa. jar
export CLASSPATH

This is done automatically if you use the ‘kawa’ script.

3.3.2 Build Kawa using ant

Kawa now includes an Ant buildfile (build.xml). Ant (http://jakarta.apache.org/ant/)
is a part of the Apache Jakarta project. If you don’t hava Ant installed, get it from
http://ant.apache.org/bindownload.cgi. The buildfile should work with Ant 1.3, and

Chapter 3: Building and installing Kawa 6

has been tested with 1.4.1. and 1.5.1. The build is entirely Java based and works equally
well on *nix, Windows, and presumably most any other operating system.

Once Ant has been installed and configured (you may need to set the JAVA_HOME, and
ANT_HOME environment variables), you should be able to change to the directory containing
the build.xml file, and invoke the ‘ant’ command. With the default settings, a successful
build will result in a kawa-1.7.90. jar in the current directory

There are a few Ant "targets" of interest (they can be supplied on the Ant command
line):

all This is the default, it does classes and jar.

classes Compiles all the files into *.class files into the directory specified by the
build.dir property.

jar Builds a jar into into the directory specified by the dist.dir property.
runw Run Kawa in a GUI window.
clean Deletes all files generated by the build, including the jar.

There is not yet a test target for running the testsuite.

The are various "properties" that control what ant does. You can override the on the
command line or by editing the build.properties file in the same directory as build.xml.
For example the build.dir directory tells ant where to build temporary files, and where to
leave the resulting . jar file. For example, to leave the generated files in the sub-directory
named BUILD do:

ant -Dbuild.dir=BUILD

A sample build.properties is provided and it contains comments explaining many of
the options.

Here are a few general properties that help to customize your build:

build.dir
Path to put the temporary files used for building.

dist.dir Path to put the resulting jar file.

version.local
A suffix to add to the version label for your customized version.

debug Whether (true/false) the Javac "-g" option is enabled.
optimize Whether (true/false) the Javac "-O" option is enabled.

Here are some Kawa-specific ones (all true/false): with-collections, with-references,
with-awt, with-swing, enable-jemacs, and enable-servlet> See the sample build.properties
for more information on these.

If you change any of the build properties, you will generally want to do an ‘ant clean’
before building again as the build is often not able to notice that kind of change. In the case
of changing a directory path, you would want to do the clean before changing the path.

A special note for NetBeans users: For some reason the build-tools target which compiles
an Ant task won’t compile with the classpath provided by NetBeans. You may do ‘ant

Chapter 3: Building and installing Kawa 7

build-tools’ from the command line outside of NetBeans, in which case you will not want
to use the clean target as that will delete the tool files as well. You can use the clean-
build and/or clean-dist targets as appropriate. Alternatively you can add ant.jar to
the build-tools classpath by copying or linking it into a lib/ext directory in Kawa’s
source directory (the one containing the build.xml file).

3.3.3 Using the Jikes compiler

Jikes (http://oss.software.ibm.com/developerworks/opensource/jikes/project/)
is a Java source-to-bytecode compiler that is much faster than Sun’s javac. (Note that this
only speeds up building Kawa from source, not actually running Kawa.) The instructions
for using jikes are as above, except that you need to specify Jikes at configure time,
setting the JAVAC environment variable. If jikes is in your execution path, do:

JAVAC=jikes ./configure

You also need to inform Jikes where it should find the standard Java classes (since Jikes
is a compiler only). For example:

CLASSPATH=. : /opt/jdk1.3/jre/lib/rt.jar
export CLASSPATH

3.3.4 Compiling Kawa to native code with GCJ

The GNU Compiler for the Java(tm) Programming Language (GCJ (http://gcc.gnu.org/java/))
is part of the GNU Compiler Collection (GCC (http://gcc.gnu.org/)). It can compile
Java source or bytecode files into native code on supported systems. Version 3.3 or later of
GCC is recommended, and only Intel x86-based Linux/GNU system have been tested with
Kawa.

First, get and install GCC 3.3. Set PREFIX to where you want to install GCJ, and
configure it with these options:
./configure --enable-threads --enable-languages=c++,java —-prefix $PREFIX

make bootstrap
make install

Make sure gcj is in your path and refers to the newly-installed version, and if needed,
set LD_LIBRARY_PATH to point to the directory where 1ibgcj.so was installed:

PATH=$PREFIX/bin:$PATH
LD_LIBRARY_PATH=$PREFIX/lib
export LD_LIBRARY_PATH

To build Kawa, you need to specify ——with-gcj to configure which tells it to use GCJ.
Currently you also need to specify ——without-awt --without-swing because GCJ does
not yet support AWT or Swing:

./configure --with-gcj --without-awt --without-swing --prefix $PREFIX
Then as before:

make
make install

Chapter 4: How to start up and run Kawa 8

3.3.5 Building Kawa under MS-Windows

Using the ant method is recommended for building Kawa under Microsoft Windows. You
may get an error message "Out of environment space." See http://support.microsoft.com/support/Kkl
for a solution. Alternatively you can run the class org.apache.tools.ant.Main directly
from the Ant jar.

The Kawa configure and make process assumes a Unix-like environment. If you want to
build Kawa from source under Windows (95, 98, or NT), you could use a Unix empulation
package, such as the free Cygwin (http://sources.redhat.com/cygwin/). However, there
are some problems with filenames that make this more complicated than it should be. It
should be possible to build Kawa under Cygwin using gcj as descibed above.

4 How to start up and run Kawa

The easiest way to start up Kawa is to run the ‘kawa’ program. This finds your java
interpreter, and sets up ‘CLASSPATH’ correctly. If you have installed Kawa such $PREFIX/bin
is in your $PATH, just do:

kawa

However, ‘kawa’ only works if you have a Unix-like environment. On some platforms,
‘kawa’ is a program that uses the GNU ‘readline’ library to provide input line editing.

To run Kawa manually, you must start a Java interpreter. How you do this depends on
the Java interpreter. For JavaSoft’s JDK, you must have the Java interpreter in your PATH.
You must also make sure that the kawa/repl.class file, the rest of the Kawa packages,
and the standard Java packages can be found by searching CLASSPATH. See Section 3.1
[Running Javal, page 3.

Then you do:

java kawa.repl

In either case, you will then get the ‘#|kawa:1|# prompt, which means you are in the
Kawa read-eval-print-loop. If you type a Scheme expression, Kawa will evaluate it. Kawa
will then print the result (if there is a non-"void" result).

4.1 Command-line arguments

You can pass various flags to Kawa, for example:

kawa -e ’(display (+ 12 4)) (newline)’
or:

java kawa.repl -e ’(display (+ 12 4)) (newline)’
Either causes Kawa to print ‘16’, and then exit.

At startup, Kawa executes an init file from the user’s home directory. The init file is
named .kawarc.scm on Unix-like systems (those for which the file separator is >/’), and
kawarc.scm on other systems. This is done before the read-eval-print loop or before the
first -f or —c argument. (It is not run for a —e command, to allow you to set options to
override the defaults.)

Chapter 4:

‘~e expr’

‘-c expr’

How to start up and run Kawa 9

Kawa evaluates expr, which contains one or more Scheme expressions. Does
not cause the ~/.kawarc.scn init file to be run.

Same as ‘-e expr’, except that it does cause the ~/.kawarc.scm init file to be
run.

‘—f filename-or-url’

‘-=help’

Kawa reads and evaluates expressions from the file named by filename-or-url.
If the latter is ‘~’, standard input is read (with no prompting). Otherwise,
it is equivalent to evaluating ‘(load "filename-or-url")’. The filename-or-url
is interpreted as a URL if it is absolute - it starts with a "URI scheme" like
http:.

The global variable ‘command-line-arguments’ is set to the remaining argu-
ments (if any), and an interactive read-eval-print loop is started. This uses the
same "console" as where you started up Kawa; use ‘-w’ to get a new window.

Creates a new top-level window, and runs an interactive read-eval-print in the
new window. See Section 4.3 [New-Window], page 11. Same as -e (scheme-
window #t). You can specify multiple ‘-w’ options, and also use ‘-s’.

Prints out some help.

‘——version’

Prints out the Kawa version number, and then exits.

‘--server portnum’

‘——scheme’

‘-—elisp’
‘——emacs’

Start a server listening from connections on the specified portnum. Each con-
nection using the Telnet protocol causes a new read-eval-print-loop to started.
This option allows you to connect using any Telnet client program to a remote
"Kawa server".

Set the default language to Scheme. (This is the default unless you select
another language, or you name a file with a known extension on the command-
line.)

‘-—emacs-1isp’

‘--lisp’
‘--clisp’
‘-—clisp’

Set the default language to Emacs Lisp. (The implementation is quite incom-
plete.)

‘~—commonlisp’
‘~-—common-1isp’

‘——krl’

Set the default language to CommonLisp. (The implementation is very incom-
plete.)

Set the default language to KRL. See Chapter 13 [KRL], page 76.

Chapter 4: How to start up and run Kawa 10

‘—==brl’ Set the default language to KRL, in BRL-compatibility mode. See Chapter 13
[KRL], page 76.

‘--xquery’
Set the default language to the draft XML Query language. See the Kawa-XQuery
page (http://www.gnu.org/software/qexo/) for more information.

‘~-xslt’ Set the default language to XSLT (XML Stylesheet Language Transforma-
tions). (The implementation is very incomplete.) See the Kawa-XSLT page
(http://www.gnu.org/software/qexo/xslt.html) for more information.

‘-—output-format format’

‘-—format format’
Change the default output format to that specified by format. See (undefined)
[Named output formats|, page (undefined) for more information and a list.

The following options control which calling conventions are used:

‘-—full-tailcalls’
Use a calling convention that supports proper tail recursion.

‘~-no-full-tailcalls’
Use a calling convention that does not support proper tail recursion. Self-tail-
recursion (i.e. a recursive call to the current function) is still implemented
correctly, assuming that the called function is known at compile time.

The default is currently ——-no-full-tailcalls because I believe it is faster (though I
have not done any measurements yet). It is also closer to the Java call model, so may be
better for people primarily interested in using Kawa for scripting Java systems.

Both calling conventions can co-exist: Code compiled with --full-tailcalls can call
code compiled with —-no-full-tailcalls and vice versa.

The options ‘-C’, ‘*=d’, ‘-T’, ‘~P’, ‘~-main’ ‘--applet’, and --servlet are used to compile
a Scheme file; see Section 6.2 [Files compilation], page 13. The option ‘--connect portnum’
is only used by the ‘kawa’ front-end program.

The following options are useful if you want to debug or understand how Kawa works.

‘-—debug-dump-zip’
Normally, when Kawa loads a soyrce file, or evaluates a non-trivial expression,
it generates new internal Java classes but does not write them out. This option
asks it to write out generated classes in a ‘.zip’ archive whose name has the
prefix ‘kawa-zip-dump-’.

‘~-—debug-print-expr’
Kawa translates source language forms into an internal Expression data struc-
ture. This option causes that data structure to be written out in a readable
format to the standard output.

‘-—debug-print-final-expr’
Similar to the previous option, but prints out the Expression after various
transformations and optimizations have been done, and just before code gener-
ation.

Chapter 4: How to start up and run Kawa 11

If there are further command-line arguments after the options have been processed, then
the first remaining argument names a file that is read and evaluated. If there is no such
argument, then Kawa enters an interactive read-eval-print loop, but only if none of the ‘-¢’,
‘-e’, ‘=f’, ‘=g’, ‘=C’, or ‘==’ options were specified.

4.2 Running Command Scripts

Unix-like systems support a mechanism where a script can specify a programs that
should execute it. The convention is that the first line of the file should start with the two
characters ‘#!’ followed by the absolute path of the program that should process (interpret)
the script.

This is convention works well for script languages that use ‘#’ to indicate the start of
a comment, since the interpreter will automatically ignore the line specifying the inter-
preter filename. Scheme, however, uses ‘#’ for various special objects, and Kawa specifically
uses ‘#!” as a prefix for various Section 7.3 [Special named constants], page 20 such as
#!optional.

Kawa does recognize the three-character sequence ‘#!/’ at the beginning of a file as
special, and ignores it. So you can specify command interpreters, as long as you don’t put
a space between the ‘#!’ and the interpreter filename. Here is an example:

#!/usr/local/bin/kawa
(format #t "The time is “s”%" (make <java.util.Date>))

If this file has the execute permission set and is in your PATH, then you can execute it
just my naming it on command line. The system kernel will automatically execute kawa,
passing it the filename as an argument.

Note that the full path-name of the kawa interpreter must be hard-wired into the script.
This means you may have to edit the script depending on where Kawa is installed on your
system. Another possible problem is that the interpreter must be an actual program, not a
shell script. Depending on how you configure and install Kawa, kawa can be a real program
or a script. You can avoid both problems by the env program, available on most modern
Unix-like systems:

#!/usr/bin/env kawa
(format #t "The time is “s”%" (make <java.util.Date>))

4.3 Running a Command Interpreter in a new Window

An alternative interface runs the Java read-eval-print-loop inside a new window. This
is in some ways nicer. One reason is that it provides better editing. You can also create
new windows. They can either have different top-level environments or they can share
environments. To try it, do:

java kawa.repl -w

4.4 Exiting Kawa

Kawa normally keeps running as long as there is an active read-eval-print loop still
awaiting input or there is an unfinished other computation (such as requested by a ‘-e’ of
‘~f’ option).

Chapter 6: Compiling Scheme code to byte-code or an executable 12

To close a read-eval-print-loop, you can type the special literal #!eof at top level. This
is recognized as end-of-file. Unfortunately, due to thread-related complications, just typing
an end-of-file character (normally ctrl/D until Unix), will not work.

If the read-eval-print-loop is in a new window, you can select ‘Close’ from the ‘File’
mentu.

To exit the entire Kawa session, call the exit procedure (with 0 or 1 integer arguments).

5 Features of R5RS not implemented

Kawa implements all the required and optional features of R5RS, with the following
exceptions.

The entire "numeric tower" is implemented. However, some transcendental function
only work on reals. Integral function do not necessarily work on inexact (floating-point)
integers. (The whole idea of "inexact integer" in R5RS seems rather pointless ...)

Also, call-with-current-continuation is only "upwards" (7). I.e. once a continua-
tion has been exited, it cannot be invoked. These restricted continuations can be used to
implement catch/throw (such as the examples in R4RS), but not co-routines or backtrack-
ing.

Kawa now does general tail-call elimination, but only if you use the flag ——full-tail-
calls. (Currently, the eval function itself is not fully tail-recursive, in violation of R5RS.)
The --full-tail-calls flag is not on by default, partly because it is noticably slower
(though I have not measured how much), and partly I think it is more useful for Kawa
to be compilatible with standard Java calling conventions and tools. Code compiled with
--full-tail-calls can call code compiled without it and vice versa.

Even without —--full-tail-calls, if the compiler can prove that the procedure being
called is the current function, then the tail call will be replaced by a jump. This means the
procedure must be defined using a letrec, not a define (because the compiler does not know
if someone might re-define a global definition), and there must be no assignments (using
set!) to the procedure binding.

6 Compiling Scheme code to byte-code or an
executable

All Scheme functions and source files are invisibly compiled into internal Java byte-
codes. A traditional evaluator is only used for top-level directly entered expressions outside
a lambda. (It would have been simpler to also byte-compile top-level expressions by sur-
rounding them by a dummy lambda. However, this would create a new Class object in the
Java VM for every top-level expression. This is undesirable unless you have a VM that can
garbage collect Class objects.)

To save speed when loading large Scheme source files, you probably want to pre-compile
them and save them on your local disk. There are two ways to do this.

You can compile a Scheme source file to a single archive file. You do this using the
compile-file function. The result is a single file that you can move around and load

Chapter 6: Compiling Scheme code to byte-code or an executable 13

just like the .scm source file. You just specify the name of the archive file to the load
procedure. Currently, the archive is a "zip" archive and has extension ".zip"; a future
release will probably use "Java Archive" (jar) files. The advantage of compiling to an
archive is that it is simple and transparent. A minor disadvantage is that it causes the Java
"verifier" to be run when functions are loaded from it, which takes a little extra time.

Alternatively, you can compile a Scheme source file to a collection of ‘. class’ files. You
then use the standard Java class loading mechanism to load the code. The Java "verifier"
does not need to get run, which makes loading a little faster. The compiled class files do
have to be installed be installed somewhere in the CLASSPATH.

You can also compile your Scheme program to native code using GCJ.

6.1 Compiling Scheme to an archive file

compile-file source-file compiled-archive Function
Compile the source-file, producing a .zip archive compiled-file.

For example, to byte-compile a file ‘foo.scm’ do:
(compile-file "foo.scm" "foo")

This will create ‘foo.zip’, which contains byte-compiled "j-code". You can
move this file around, without worrying about class paths. To load the compiled
file, you can later load the named file, as in either (load "foo") or (load
"foo.zip"). This should have the same effect as loading ‘foo.scm’, except you
will get the faster byte-compiled versions.

6.2 Compiling Scheme to a set of .class files

Invoking ‘kawa’ (or ‘java kawa.repl’) with the ‘-C’ flag will compile a ‘. scm’ source file
into one or more ‘.class’ files:

kawa --main -C myprog.scm
You run it as follows:

kawa [-d outdirectory]l [-P prefix] [-T topname] [--main | --applet | --servlet] -C in-
file ...

Note the ‘-C’ must come last, because ‘Kawa’ processes the arguments and options in
order,

Here:

‘~C infile ...’
The Scheme source files we want to compile.

‘~d outdirectory’
The directory under which the resulting ‘.class’ files will be. The default is
the current directory.

‘-P prefix’ A string to prepend to the generated class names. The default is the empty
string.

Chapter 6: Compiling Scheme code to byte-code or an executable 14

‘~T topname’
The name of the "top" class - i.e. the one that contains the code for the top-
level expressions and definitions. The default is generated from the infile and
prefix.

‘--main’ Generate a main method so that the resulting "top" class can be used as a
stand-alone application. See Section 6.4 [Application compilation], page 15.

‘-—applet’
The resulting class inherits from java.applet.Applet, and can be used as an
applet. See Section 6.5 [Applet compilation], page 15.

‘——servlet’
The resulting class implements javax.servlet.http.HttpServlet, and can
be used as an servlet in a servlet container like Tomcat.

When you actually want to load the classes, the outdirectory must be in your ‘CLASSPATH’.
You can use the standard load function to load the code, by specifying the top-level class,
either as a file name (relative to outdirectory) or a class name. E.g. if you did:

kawa -d /usr/local/share/java -P my.lib. -T foo -C foosrc.scm
you can use either:
(load "my.lib.foo")
or:
(load "my/lib/foo.class")
If you are compiling a Scheme source file (say ‘foosrc.scm’) that uses macros defined

in some other file (say ‘macs.scm’), you need to make sure the definitions are visible to the
compiler. One way to do that is with the ‘-£’:

kawa -f macs.scm -C foosrc.scm

6.3 Compilation options

Various named option control how Kawa compiles certain forms.

‘~-module-static’
If no module-static is specified, generate a static module (as if (module-
static #t) were specified). See Section 10.8 [Module classes], page 61.

‘-—warn-invoke-unknown-method’
Emit a warning if the invoke function calls a named method for which there is
no matching method in the compile-time type of the receiver. This (currently)
defaults to on; to turn it off use the ——no-warn-invoke-unknown-method flag.

‘-—warn-undefined-variable’
Emit a warning if the code references a variable which is neither in lexical
scope nor in the compile-time dynamic (global) environment. This is useful for
catching typos. (A define-variable form can be used to silence warnings. It
declares to the compiler that a variable is to be resolved dynamically.)

Chapter 6: Compiling Scheme code to byte-code or an executable 15

An option can be followed by a value, as in ——warn-invoke-unknown-method=no. For
boolean options, the values yes, true, on, or 1 enable the option, while no, false, off,
or 0 disable it. You can also negate an option by prefixing it with no-: The option --no-
warn-invoke-unknown-method is the same as -—-warn-invoke-unknown-method=no.

You can set the same options (except, for now, module-static) within your Scheme
source file. (In that case they override the options on the command line.)

module-compile-options [key: value] ... Syntax
This sets the value of the key option to value for the current module (source
file). It takes effect as soon it is seen during the first macro-expansion pass,
and is active thereafter (unless overridden by with-compile-options).

The key is one of the above option names. (The following colon make it a Kawa
keyword.) The value must be a literal value: either a boolean (#t or #f), a
number, or a string, depending on the key. (All the options so far are boolean
options.)

(module-compile-options warn-undefined-variable: #t)

;3 This causes a warning message that y is unknown.

(define (func x) (list x y))

with-compile-options [key: value] ... body Syntax
Similar to module-compile-options, but the option is only active within body.
(define (func x)
(with-compile-options warn-invoke-unknown-method: #f
(invoke x ’size)))

6.4 Compiling Scheme to a standalone application

A Java application is a Java class with a special method (whose name is main). The
application can be invoked directly by naming it in the Java command. If you want to
generate an application from a Scheme program, create a Scheme source file with the defi-
nitions you need, plus the top-level actions that you want the application to execute. You
can compile in the regular way decribed in the previous section, but add the -—main option.
For example, assuming your Scheme file is MyProgram. scm:

kawa --main -C MyProgram.scm

This will create a MyProgram.class which you can either load (as decribed in the
previous section), or invoke as an application:

java MyProgram [args]

Your Scheme program can access the command-line arguments args by using the global
variable ‘command-line-arguments’.

6.5 Compiling Scheme to an applet

An applet is a Java class that inherits from java.applet.Applet. The applet can be
downloaded and run in a Java-capable web-browser. To generate an applet from a Scheme
program, write the Scheme program with appropriate definitions of the functions ‘init’,

Chapter 6: Compiling Scheme code to byte-code or an executable 16

‘start’, ‘stop’ and ‘destroy’. You must declare these as zero-argument functions with a
<void> return-type.

Here is an example, based on the scribble applet in Flanagan’s "Java Examples in a
Nutshell" (O’Reilly, 1997):

(define-private last-x 0)
(define-private last-y 0)

(define (init) <void>
(let ((applet :: <java.applet.Applet> (this)))
(invoke applet ’addMouseListener
(object (<java.awt.event.MouseAdapter>)
((mousePressed (e :: <java.awt.event.MouseEvent>)) <void>
(set! last-x (invoke e ’getX))
(set! last-y (invoke e ’getY)))))
(invoke applet ’addMouseMotionListener
(object (<java.awt.event.MouseMotionAdapter>)
((mouseDragged (e :: <java.awt.event.MouseEvent>)) <void>
(let ((g :: <java.awt.Graphics>
(invoke applet ’getGraphics))
(x :: <int> (invoke e ’getX))
(y :: <int> (invoke e ’getY)))
(invoke g ’drawLine last-x last-y x y)
(set! last-x x)
(set! last-y y)))))))

(define (start) <void> (format #t "called start.”%~!"))
(define (stop) <void> (format #t "called stop.”%"!"))
(define (destroy) <void> (format #t "called destroy.~ %~ !"))
You compile the program with the ‘--applet’ flag in addition to the normal ‘-C’ flag:
java kawa.repl --applet -C scribble.scm

You can then create a ‘. jar’ archive containing your applet. You also need to include the
Kawa classes in the ‘. jar’, or you can include a MANIFEST file that specifies Class-Path to
use a Java 2 download extension (http://java.sun.com/docs/books/tutorial/ext/basics/download.h
jar cf scribble.jar scribble*.class other-classes ...
Finally, you create an ‘.html’ page referencing your applet:
<html><head><title>Scribble testapp</title></head>
<body><h1>Scribble testapp</h1>
You can scribble here:

<applet code="scribble.class" archive="scribble.jar" width=200 height=200>
Sorry, Java is needed.</applet>
</body></html>

6.6 Compiling Scheme to a native executable

You can compile your Scheme program to native code using GCJ, as long as you have
built Kawa using GCJ.

Chapter 7: Extensions 17

First, you need to compile the Scheme code to a set of .class files; see Section 6.2 [Files
compilation], page 13.
kawa --main -C myprog.scm
Then to create an executable myprog do:
gckawa --main=myprog myprog*.class -o myprog
The gckawa is a simple shell script that calls gcj. The reason for the wildcard in
myprog*.class is that sometimes Kawa will generate some helper classes in addition to
myprog.class. The --main option tell gcj which class contains the main method it should
use. The -o option names the resulting executable program. The -1kawa option tells the
linker it should link with the kawa shared library, and the -L$PREFIX/bin option tells the
linker where it can find that library.

7 Extensions

7.1 Syntax and conditional compilation

define-syntax .. Syntax
Pattern ...

defmacro name lambda-list form ... Syntax
Defines an old-style macro a la Common Lisp, and installs (lambda lambda-
list form ...) as the expansion function for name. When the translator sees

an application of name, the expansion function is called with the rest of the
application as the actual arguments. The resulting object must be a Scheme
source form that is futher processed (it may be repeatedly macro-expanded).

If you define a macro with defmacro, you (currently) cannot use the macro
in the same compilation as the definition. This restriction does not apply to
macros defined by define-syntax.

gentemp Function
Returns a new (interned) symbol each time it is called. The symbol names are
implementation-dependent. (This is not directly macro-related, but is often
used in conjunction with defmacro to get a fresh unique identifier.)

cond-expand cond-expand-clause* [(else command-or-definition™)] Syntax
cond-expand-clause ::= (feature-requirement command-or-definitionx)
feature-requirement ::= feature-identifier

| (and feature-requirementx)
| (or feature-requirement*)
| (not feature-requirement)
feature-identifier ::= a symbol which is the name or alias of a SRFI

The cond-expand form tests for the existence of features at macro-expansion
time. It either expands into the body of one of its clauses or signals an er-
ror during syntactic processing. cond-expand expands into the body of the

Chapter 7: Extensions 18

first clause whose feature requirement is currently satisfied; the else clause, if
present, is selected if none of the previous clauses is selected.

A feature requirement has an obvious interpretation as a logical formula, where
the feature-identifier variables have meaning true if the feature corresponding
to the feature identifier, as specified in the SRFI registry, is in effect at the
location of the cond-expand form, and false otherwise. A feature requirement
is satisfied if its formula is true under this interpretation.
Examples:
(cond-expand
((and srfi-1 srfi-10)
(write 1))
((or srfi-1 srfi-10)
(write 2))
(else))
(cond-expand
(command-line
(define (program-name) (car (argv)))))
The second example assumes that command-line is an alias for some feature
which gives access to command line arguments. Note that an error will be
signaled at macro-expansion time if this feature is not present.

7.2 Multiple values

The multiple-value feature was added in R5RS.

values object ... Function
Delivers all of its arguments to its continuation.

call-with-values thunk receiver Function
Call its thunk argument with a continuation that, when passed some values,
calls the receiver procedure with those values as arguments.

let-values ((formals expression) ...) body Syntax
Each formals should be a formal arguments list as for a 1lambda, cf section 4.1.4
of the R5RS.

The expressions are evaluated in the current environment, the variables of the
formals are bound to fresh locations, the return values of the expressions are
stored in the variables, the body is evaluated in the extended environment, and
the values of the last expression of body are returned. The body is a "tail

body", cf section 3.5 of the R5RS.

The matching of each formals to values is as for the matching of formals to
arguments in a lambda expression, and it is an error for an expression to return
a number of values that does not match its corresponding formals.

(let-values ((a b . ¢) (values 1 2 3 4)))
(list a b c¢)) --> (1 2 (3 4))

Chapter 7: Extensions

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let-values (((a b) (values x y))
((x y) (values a b)))
(1ist a b x y))) -—> (xy a b)

let*-values ((formals expression) ...) body Syntax
Each formals should be a formal arguments list as for a lambda expression, cf
section 4.1.4 of the R5RS.

let*-values is similar to let-values, but the bindings are performed sequen-
tially from left to right, and the region of a binding indicated by (formals ex-
pression) is that part of the let*-values expression to the right of the binding.
Thus the second binding is done in an environment in which the first binding
is visible, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let*-values (((a b) (values x y))
((x y) (values a b)))
(list a b x y))) -—> (xyxy)

receive formals expression body Syntax
The formals, expression, and body are as described in R5RS. Specifically, for-
mals can have any of three forms:

‘(variablel ... variablen)’
The environment in which the receive-expression is evaluated is ex-
tended by binding variablel, ..., variablen to fresh locations. The
expression is evaluated, and its values are stored into those loca-
tions. (It is an error if expression does not have exactly n values.)

‘variable’ The environment in which the receive-expression is evaluated is
extended by binding variable to a fresh location. The expression is
evaluated, its values are converted into a newly allocated list, and
the list is stored in the location bound to variable.

‘(variablel ... variablen . variablen+1)’

The environment in which the receive-expression is evaluated is
extended by binding variablel, ..., variablen+1 to fresh locations.
The expression is evaluated. Its first n values are stored into the
locations bound to variablel ... variablen. Any remaining values
are converted into a newly allocated list, which is stored into the
location bound to variablen+1 (It is an error if expression does not
have at least n values.)

In any case, the expressions in body are evaluated sequentially in the extended
environment. The results of the last expression in the body are the values of
the receive-expression.

values-append argl ... Function
The values resulting from evaluating each argument are appended together.

19

Chapter 7: Extensions 20

7.3 Special named constants

#!optional Constant
Special self-evaluating literal used in lambda parameter lists before optional
parameters.

#!rest Constant
Special self-evaluating literal used in lambda parameter lists before the rest
parameter.

#lkey Constant
Special self-evaluating literal used in lambda parameter lists before keyword
parameters.

#!leof Constant

The end-of-file object.

Note that if the Scheme reader sees this literal at top-level, it is returned liter-
ally. This is indistinguishable from coming to the end of the input file. If you
do not want to end reading, but want the actual value of #!eof, you should
quote it.

#!void Constant
The void value. Same as (values). If this is the value of an expression in a
read-eval-print loop, nothing is printed.

#!null Constant
The Java null value. This is not really a Scheme value, but is useful when
interfacing to low-level Java code.

7.4 Keywords

Keywords are similar to symbols. The main difference is that keywords are self-evaluating
and therefore do not need to be quoted in expressions. They are used mainly for specifying
keyword arguments.

keyword ::= identifier:
An alternative syntax, with the colon first, is supported for compatibility with Common
Lisp and some other Scheme implementations:
keyword ::= :identifier
Putting the colon first has exactly the same effect as putting it last; putting is last is
recommended, and is how keywords are printed.

A keyword is a single token; therefore no whitespace is allowed between the identifier
and the colon (which is not considered part of the name of the keyword).

keyword? obj Function
Return #t if obj is a keyword, and otherwise returns #f.

Chapter 7: Extensions 21

keyword->string keyword Function
Returns the name of keyword as a string. The name does not include the final
#\:.

string->keyword string Function
Returns the keyword whose name is string. (The string does not include a final
#\:.)

7.5 Procedures

apply proc [argl ...] args Function
Args must be a sequence (list, vector, or string) or a primitive Java array. (This
is an extension over standard Scheme, which requires that args be a list.) Calls
the proc (which must be a procedure), using as arguments the argl... values
plus all the elements of args.

constant-fold proc argl ... Syntax
Same as (proc argl ...), unless proc and all the following arguments are
compile-time constants. (That is: They are either constant, or symbols that
have a global binding and no lexical binding.) In that case, proc is applied
to the arguments at compile-time, and the result replaces the constant-fold
form. If the application raises an exception, a compile-time error is reported.
For example:

(constant-fold vector ’a ’b ’c)

is equivalent to (quote #(a b c)), assuming vector has not been re-bound.

7.5.1 Procedure properties

You can associate arbitrary properties with any procedure. Each property is a (key,
value)-pair. Usually the key is a symbol, but it can be any object.

The system uses certain internal properties: ’name refers to the name used when a
procedure is printed; ’emacs-interactive is used to implement Emacs interactive spec-
ification; ’setter is used to associate a setter prcedure.

procedure-property proc key [default] Function
Get the property value corresponding to the given key. If proc has no property
with the given key, return default (which defaults to #f) instead.

set-procedure-property! proc key value Function
Associate the given value with the key property of proc.

To change the print name of the standard + procedure (probably not a good ideal), you
could do:

(set-procedure-property! + ’name ’PLUS)

Note this only changes the name property used for printing:

Chapter 7: Extensions 22

+ => #<procedure PLUS>
(+ 23) =>5
(PLUS 3 4) => ERROR
As a matter of style, it is cleaner to use the define-procedure form, as it is a more
declarative interface.

define-procedure name [propname: propvalue| ... method ... Syntax
Defines name as a compound procedure consisting of the specified methods,
with the associated properties. Applying name select the "best" method, and
applies that. See the following section on generic procedures.

For example, the standard vector-ref procedure specifies one method, as well
as the setter property:
(define-procedure vector-ref
setter: vector-set!
(lambda ((vector :: <vector>) (k :: <int>))
(invoke vector ’get k)))

7.5.2 Generic (dynamically overloaded) procedures

A generic procedure is a collection of method procedures. (A "method procedure" is not
the same as a Java method, but the terms are related.) You can call a generic procedure,
which selects the "closest match" among the component method procedures: I.e. the most
specific method procedure that is applicable given the actual arguments.

Note: The current implementation of selecting the "best" method is not reliable
if there is more than one method. It can select depending on argument count,
and it can select between primitive Java methods. However, it cannot yet do
what you probably hope for: select between different Scheme procedures based
on parameter types.

make-procedure [keyword: value]... method... Function
Create a generic procedure given the specific methods. You can also specify
property values for the result.
The keywords specify how the arguments are used. A method: keyword is op-
tional and specifies that the following argument is a method. A name: keyword
specifies the name of the resulting procedure, when used for printing. Unrec-
ognized keywords are used to set the procedure properties of the result.
(define plus10 (make-procedure foo: 33 name: ’PluslO
method: (lambda (x y) (+ x y 10))
method: (lambda () 10)))

7.5.3 Extended Formal Arguments List

The formal arguments list of a lambda expression has two extendsions over standard
Scheme: Kawa borrows the extended formal argument list of DSSSL, and Kawa allows you
to declare the type of the parameter.

lambda-expression ::= (lambda formals [rtype| body)

where

Chapter 7: Extensions 23

formals ::= (formal-arguments) | rest-arg
You can of course also use the extended format in a define:
(define (name formal-arguments) [rtype| body)

formal-arguments ::=

req-opt-args (rest-key-args | . rest-arg)
reg-opt-args ::= req-arg ... [#!optional opt-arg ...]
rest-key-args ::= [#!rest rest-arg| [#!key key-arg ...]
reg-arg ::= variable [:: type] | (variable [[::] type])
opt-arg ::= arg-with-default
key-arg ::= arg-with-default
arg-with-default ::= variable [:: type]

| (variable [:: type [initializer| | initializer [[::] type]])
rest-arg ::= variable

When the procedure is applied to a list of actual arguments, the formal and actual
arguments are processed from left to right as follows:

e The req-args are bound to actual arguments starting with the first actual argument.
It shall be an error if there are fewer actual arguments then there are reg-args.

e Next the opt-args are bound to remaining actual arguemnts. If there are fewer re-
maining actual arguments than there are opt-args, then the remaining variables are
bound to the corresponding initializer, if one was specified, and otherwise to #f. The
initializer is evaluated in an environment in which all the previous formal parameters
have been bound.

o If there is a rest-arg, it is bound to a list of all the remaining actual arguments. These
remaining actual arguments are also eligible to be bound to keyword arguments. If
there is no rest-arg and there are no key-args, then it shall be an error if there are any
remaining actual arguments.

o If #!key was specified, then there shall be an even number of remaining actual argu-
ments. These are interpreted as a series of pairs, where the first member of each pair is
a keyword specifying the argument name, and the second is the corresponding value. It
shall be an error if the first member of a pair is not a keyword. It shall be an error if the
argument name is not the same as a variable in a key-args, unless there is a rest-arg. If
the same argument name occurs more than once in the list of actual arguments, then
the first value is used. If there is no actual argument for a particular key-arg, then the
variable is bound to the corresponding initializer, if one was specified, and otherwise
to #f. The initializer is evaluated in an environment in which all the previous formal
parameters have been bound.

If a type is specified, the corresponding actual argument (or the initializer default value)
is coerced to the specified type. In the function body, the parameter has the specified type.

If rtype (the first form of the function body) is an unbound identifier of the form <TYPE>
(that is the first character is ‘<’ and the last is ‘>’), then tha specifies the functions return
type. It is syntactic sugar for (as <TYPE> (begin BODY)).

cut slot-or-expr slot-or-expr* [<. . .>] Syntax
where each slot-or-expr is either an expression or the literal symbol <>.

Chapter 7: Extensions 24

It is frequently necessary to specialize some of the parameters of a multi-
parameter procedure. For example, from the binary operation cons one might
want to obtain the unary operation (lambda (x) (cons 1 x)). This special-
ization of parameters is also known as partial application, operator section, or
projection. The macro cut specializes some of the parameters of its first ar-
gument. The parameters that are to show up as formal variables of the result
are indicated by the symbol <>, pronouced as "slot". In addition, the symbol
<...>, pronounced as "rest-slot", matches all residual arguments of a variable
argument procedure.

A cut-expression is transformed into a lambda expression with as many formal
variables as there are slots in the list slot-or-expr*. The body of the resulting
lambda expression calls the first slot-or-expr with arguments from the slot-or-
expr* list in the order they appear. In case there is a rest-slot symbol, the
resulting procedure is also of variable arity, and the body calls the first slot-or-
expr with remaining arguments provided to the actual call of the specialized
procedure.

Here are some examples:

(cut cons (+ a 1) <>) is the same as (lambda (x2) (cons (+a 1) x2))

(cut list 1 <> 3 <> 5) is the same as (lambda (x2 x4) (list 1 x2 3 x4 5))

(cut list) is the same as (lambda () (list))

(cut list 1 <> 3 <...>) isthesame as (lambda (x2 . xs) (apply list 1 x2 3 xs))

The first argument can also be a slot, as one should expect in Scheme:
(cut <> a b) is the same as (lambda (f) (f a b))

cute slot-or-expr slot-or-expr* [<. . .>] Syntax
The macro cute (a mnemonic for "cut with evaluated non-slots") is similar
to cut, but it evaluates the non-slot expressions at the time the procedure is
specialized, not at the time the specialized procedure is called.

For example:
(cute cons (+ a 1) <>) isthesameas (let ((al (+a1))) (lambda (x2) (cons al x2)))

As you see from comparing this example with the first example above, the cute-
variant will evaluate (+ a 1) once, while the cut-variant will evaluate it during
every invocation of the resulting procedure.

7.6 Quantities and Numbers

As a super-class of numbers, Kawa also provides quantities. A quantity is a product of
a unit and a pure number. The number part can be an arbitrary complex number. The
unit is a product of integer powers of base units, such as meter or second.

Kawa quantities are a generalization of the quantities in DSSSL, which only has length-
derived quantities.

The precise syntax of quantity literals may change, but some examples are 10pt (10
points), 5s (5 seconds), and 4cm~2 (4 square centimeters).

Chapter 7: Extensions

quantity? object Function
True iff object is a quantity. Note that all numbers are quantities, but not the
other way round. Currently, there are no quantities that re not numbers. To
distinguish a plain unit-less number from a quantity, you can use complex?.

quantity->number q Function
Returns the pure number part of the quantity q, relative to primitive (base)
units. If ¢ is a number, returns q. If ¢ is a unit, yields the magitude of g
relative to base units.

quantity->unit q Function
Returns the unit of the quantity q. If ¢ is a number, returns the empty unit.

make-quantity x unit Function
Returns the product of x (a pure number) and unit. You can specify a string
instead of unit, such as "cm" or "s" (seconds).

define-base-unit unit-name dimension Syntax
Define unit-name as a base (primitive) unit, which is used to measure along the
specified dimension.

(define-base-unit dollar "Money")

define-unit unit-name expression Syntax
Define unit-name as a unit (that can be used in literals) equal to the quantity
expression.

(define-unit cent 0.01dollar)

quotient x y Function
Generalized to arbitrary real numbers, using the definition: (truncate (/ x
y)).

remainder x y Function

Generalized to arbitrary real numbers, using the definition: (- x (* y (truncate
(/ xy)))). If y is 0, the result is x - i.e. we take (* 0 (quotient x 0)) to be
0. The result is inexact if either argument is inexact, even if x is exact and y
is 0.

modulo x y Function
Generalized to arbitrary real numbers, using the definition: (- x (x y (floor
(/ xy)))). If yis 0, the result is x. The result is inexact if either argument is
inexact, even if x is exact and y is 0.

7.7 Logical Number Operations

These functions operate on the 2’s complement binary representation of an exact integer.

logand i ... Function
Returns the bit-wise logical "and" of the arguments. If no argument is given,
the result is -1.

Chapter 7: Extensions 26

logior i ... Function
Returns the bit-wise logical "(inclusive) or" of the arguments. If no argument
is given, the result is 0.

logxor i ... Function
Returns the bit-wise logical "exclusive or" of the arguments. If no argument is
given, the result is 0.

lognot i Function
Returns the bit-wise logical inverse of the argument.

logop op xy Function
Perform one of the 16 bitwise operations of x and y, depending on op.

logtest i Function
Returns true if the arguments have any bits in common. Same as (not (zero?
(logand i j))), but is more efficient.

logbit? i pos Function
Returns #t iff the bit numbered pos in i is one.

arithmetic-shift ij Function
Shifts i by j. It is a "left" shift if j>0, and a "right" shift if j<O.
The result is equal to (floor (* i (expt 2 j))).

ash ij Function
Alias for arithmetic-shift.

logcount i Function
Count the number of 1-bits in i, if it is non-negative. If i is negative, count
number of 0-bits.

integer-length i Function
Return number of bits needed to represent i in an unsigned field. Regardless
of the sign of i, return one less than the number of bits needed for a field that
can represent i as a two’s complement integer.

bit-extract n start end Function
Return the integer formed from the (unsigned) bit-field starting at start and
ending just before end. Same as (arithmetic-shift (bitand n (bitnot
(arithmetic-shift -1 end))) (- start)).

7.8 Lists

The SRFI-1 List Library (http://srfi.schemers.org/srfi-1/srfi-1.html) is avail-
able, though not enabled by default. To use its functions you must (require ’1list-1ib)
or (require ’srfi-1).

(require ’list-1ib)
(iota 5 0 -0.5) ;; => (0.0 -0.5 -1.0 -1.5 -2.0)

Chapter 7: Extensions 27

reverse! list Function
The result is a list consisting of the elements of list in reverse order. No new
pairs are allocated, instead the pairs of list are re-used, with cdr cells of Iist
reversed in place. Note that if list was pair, it becomes the last pair of the
reversed result.

7.9 Strings

string-upcase str Function
Return a new string where the letters in str are replaced by their upper-case
equivalents.

string-downcase str Function
Return a new string where the letters in str are replaced by their lower-case
equivalents.

string-capitalize str Function

Return a new string where the letters in str that start a new word are replaced
by their title-case equivalents, while non-initial letters are replaced by their
lower-case equivalents.

string-upcase! str Function
Destructively modify str, replacing the letters by their upper-case equivalents.

string-downcase! str Function
Destructively modify str, replacing the letters by their upper-lower equivalents.

string-capitalize! str Function
Destructively modify str, such that the letters that start a new word are replaced
by their title-case equivalents, while non-initial letters are replaced by their
lower-case equivalents.

7.10 Multi-dimensional Arrays

Arrays are heterogeneous data structures whose elements are indexed by integer se-
quences of fixed length. The length of a valid index sequence is the rank or the number of
dimensions of an array. The shape of an array consists of bounds for each index.

The lower bound b and the upper bound e of a dimension are exact integers with (<=
b e). A valid index along the dimension is an exact integer k that satisfies both (<= b k)
and (< k e). The length of the array along the dimension is the difference (- e b). The
size of an array is the product of the lengths of its dimensions.

A shape is specified as an even number of exact integers. These are alternately the lower
and upper bounds for the dimensions of an array.

array? obj Function
Returns #t if obj is an array, otherwise returns #f.

Chapter 7: Extensions

shape bound ... Function
Returns a shape. The sequence bound ... must consist of an even number of
exact integers that are pairwise not decreasing. Each pair gives the lower and
upper bound of a dimension. If the shape is used to specify the dimensions of
an array and bound ... is the sequence b0 €0 ... bk ek ... of n pairs of bounds,
then a valid index to the array is any sequence jO ... jk ... of n exact integers
where each jk satisfies (<= bk jk) and (< jk ek).

The shape of a d-dimensional array is a d 2 array where the element at k 0
contains the lower bound for an index along dimension k and the element at k
1 contains the corresponding upper bound, where k satisfies (<= 0 k) and (<

kd).
make-array shape Function
make-array shape obj Function

Returns a newly allocated array whose shape is given by shape. If obj is pro-
vided, then each element is initialized to it. Otherwise the initial contents of
each element is unspecified. The array does not retain a reference to shape.

array shape obj ... Function
Returns a new array whose shape is given by shape and the initial contents
of the elements are obj ... in row major order. The array does not retain a

reference to shape.

array-rank array Function
Returns the number of dimensions of array.

(array-rank
(make-array (shape 1 2 3 4)))

Returns 2.

array-start array k Function
Returns the lower bound for the index along dimension k.

array-end array k Function
Returns the upper bound for the index along dimension k.

array-ref array k ... Function
array-ref array index Function
Returns the contents of the element of array at index k The sequence k

. must be a valid index to array. In the second form, index must be either a
vector or a 0-based 1-dimensional array containing k
(array-ref (array (shape 0 2 0 3)
’uno ’dos ’tres
’cuatro ’cinco ’seis)
10)
Returns cuatro.

(let ((a (array (shape 4 7 1 2) 3 1 4)))
(1ist (array-ref a 4 1)

Chapter 7: Extensions 29

(array-ref a (vector 5 1))
(array-ref a (array (shape 0 2)

6 1))))
Returns (31 4).
array-set! array k ... obj Function
array-set! array index obj Function
Stores obj in the element of array at index k Returns the void value. The

sequence k ... must be a valid index to array. In the second form, index must
be either a vector or a 0-based 1-dimensional array containing k

(let ((a (make-array
(shape 4 5 4 5 4 5))))
(array-set! a 4 4 4 "huuhkaja")
(array-ref a 4 4 4))

Returns "huuhkaja".

share-array array shape proc Function
Returns a new array of shape shape that shares elements of array through proc.
The procedure proc must implement an affine function that returns indices of
array when given indices of the array returned by share-array. The array
does not retain a reference to shape.
(define i_4
(let* ((i (make-array
(shape 0 4 0 4)
0))
(d (share-array i
(shape 0 4)
(lambda (k)
(values k k)))))
(do ((k 0 (+ k 1)))
(= k 4))
(array-set! d k 1))
i))
Note: the affinity requirement for proc means that each value must be a sum
of multiples of the arguments passed to proc, plus a constant.

Implementation note: arrays have to maintain an internal index mapping from
indices k1 ... kd to a single index into a backing vector; the composition of
this mapping and proc can be recognised as (+ n0 (* nl k1) ... (* nd kd))
by setting each index in turn to 1 and others to 0, and all to 0 for the constant
term; the composition can then be compiled away, together with any complexity
that the user introduced in their procedure.

Multi-dimensional arrays are specified by SRFI-25 (http://srfi.schemers.org/srfi-25/srfi-25.htn
In Kawa, a one-dimensional array whose lower bound is 0 is also a sequence. Furthermore, if
such an array is simple (not created share-array) it will be implemented using a <vector>.
Uniform vectors and strings are also arrays in Kawa. For example:

Chapter 7: Extensions 30

(share-array
(f64vector 1.0 2.0 3.0 4.0 5.0 6.0)
(shape 0 2 0 3)
(lambda (i j) (+ (x 2 1) j)))
evaluates to a two-dimensionsal array of <double>:

#2a((1.0 2.0 3.0) (3.0 4.0 5.0))

7.11 Uniform vectors

Uniform vectors are vectors whose elements are of the same numeric type. The are de-
fined by SRFI-4 (http://srfi.schemers.org/srfi-4/srfi-4.html). However, the type
names (such as <s8vector>) are a Kawa extension.

<s8vector> Variable
The type of uniform vectors where each element can contain a signed 8-bit
integer. Represented using an array of <byte>.

<u8vector> Variable
The type of uniform vectors where each element can contain an unsigned 8-bit
integer. Represented using an array of <byte>, but each element is treated as
if unsigned.

<sl6vector> Variable
The type of uniform vectors where each element can contain a signed 16-bit
integer. Represented using an array of <short>.

<ul6vector> Variable
The type of uniform vectors where each element can contain an unsigned 16-bit
integer. Represented using an array of <short>, but each element is treated as
if unsigned.

<s32vector> Variable
The type of uniform vectors where each element can contain a signed 32-bit
integer. Represented using an array of <int>.

<u3d2vector> Variable
The type of uniform vectors where each element can contain an unsigned 32-bit
integer. Represented using an array of <int>, but each element is treated as if
unsigned.

<s64vector> Variable
The type of uniform vectors where each element can contain a signed 64-bit
integer. Represented using an array of <long>.

<u64vector> Variable
The type of uniform vectors where each element can contain an unsigned 64-bit
integer. Represented using an array of <long>, but each element is treated as
if unsigned.

Chapter 7: Extensions 31

<f32vector> Variable
The type of uniform vectors where each element can contain a 32-bit floating-
point real. Represented using an array of <float>.

<f64vector> Variable
The type of uniform vectors where each element can contain a 64-bit floating-
point real. Represented using an array of <double>.

s8vector? value Function
u8vector? value Function
sl6vector? value Function
ul6vector? value Function
s32vector? value Function
u32vector? value Function
s64vector? value Function
u64vector? value Function
f32vector? value Function
f64vector? value Function

Return true iff value is a uniform vector of the specified type.

make-s8vector n [value] Function
make-u8vector n [value] Function
make-s16vector n [value] Function
make-ul6vector n [value] Function
make-s32vector n [value] Function
make-u32vector n [value] Function
make-s64vector n [value] Function
make-u64vector n [value] Function
make-f32vector n [value] Function
make-f64vector n [value] Function

Create a new uniform vector of the specified type, having room for n elements.
Initialize each element to value if it is specified; zero otherwise.

s8vector value ... Function
u8vector value ... Function
sl6vector value .. Function
ul6vector value ... Function
s32vector value ... Function
u32vector value ... Function
s64vector value ... Function
ub4vector value ... Function
f32vector value ... Function
f64vector value ... Function

Create a new uniform vector of the specified type, whose length is the number
of values specified, and initialize it using those values.

Chapter 7: Extensions

s8vector-length v Function
u8vector-length v Function
sl6vector-length v Function
ul6vector-length v Function
s32vector-length v Function
u32vector-length v Function
s64vector-length v Function
u64vector-length v Function
f32vector-length v Function
fé4vector-length v Function
Return the length (in number of elements) of the uniform vector v.
s8vector-ref v i Function
u8vector-ref vi Function
sl6vector-ref v i Function
ul6vector-ref v i Function
s32vector-ref v i Function
u32vector-ref vi Function
s64vector-ref v i Function
u64vector-ref v i Function
f32vector-ref v i Function
fé4vector-ref v i Function

Return the element at index i of the uniform vector v.

s8vector-set! vix Function
u8vector-set! vix Function
sl6vector-set! vix Function
ul6vector-set! vix Function
s32vector-set! vix Function
u32vector-set! vix Function
s64vector-set! vix Function
u64vector-set! vix Function
f32vector-set! vix Function
f64vector-set! vix Function

Set the element at index i of uniform vector v to the value x, which must be a
number coercible to the appropriate type.

s8vector->list v Function
u8vector->list v Function
sl6vector->list v Function
ul6vector->list v Function
s32vector->list v Function
u32vector->list v Function
s64vector->list v Function
u64vector->list v Function
f32vector->list v Function
f64vector->list v Function

Convert the uniform vetor v to a list containing the elments of v.

Chapter 7: Extensions 33

list->s8vector | Function
list->u8vector I Function
list->s16vector ! Function
list->ul6vector I Function
list->s32vector ! Function
list->u32vector I Function
list->s64vector ! Function
list->u64vector I Function
list->f32vector ! Function
list->f64vector ! Function

Create a uniform vector of the appropriate type, initializing it with the elements
of the list 1. The elements of I must be numbers coercible the new vector’s
element type.

7.11.1 Relationship with Java arrays

Each uniform array type is implemented as an underlying Java array, and a length field.
The underlying type is byte[] for <u8vector> or <s8vector>; short[] for <ul6vector>
or <ul6vector>; int[] for <uld2vector> or <s32vector>; longl[] for <ub4vector> or
<s64vector>; <float[] for <f32vector>; and <double[] for <f32vector>. The length
field allows a uniform array to only use the initial part of the underlying array. (This can
be used to support Common Lisp’s fill pointer feature.) This also allows resizing a uniform
vector. There is no Scheme function for this, but you can use the setSize method:

(invoke some-vector ’setSize 200)

If you have a Java array, you can create a uniform vector sharing with the Java array:
(define arr :: <byte[]> ((primitive-array-new <byte>) 10))
(define vec :: <uBvector> (make <u8vector> arr))

At this point vec uses arr for its underlying storage, so changes to one affect the other.
It vec is re-sized so it needs a larger underlying array, then it will no longer use arr.

7.12 Signalling and recovering from exceptions

catch key thunk handler Function
Invoke thunk in the dynamic context of handler for exceptions matching key.
If thunk throws to the symbol key, then handler is invoked this way:
(handler key args ...)

key may be a symbol. The thunk takes no arguments. If thunk returns nor-
mally, that is the return value of catch.

Handler is invoked outside the scope of its own catch. If handler again throws
to the same key, a new handler from further up the call chain is invoked.

If the key is #t, then a throw to any symbol will match this call to catch.
throw key &rest args ... Function

Invoke the catch form matching key, passing args to the handler.

If the key is a symbol it will match catches of the same symbol or of #t.

If there is no handler at all, an error is signaled.

Chapter 7: Extensions 34

error message args ... procedure
Raise an error with key misc-error and a message constructed by displaying
msg and writing args. This normally prints a stack trace, and brings you back to
the top level, or exits kawa if you are not running interactively. This procedure
is part of SRFI-23, and other Scheme implementations.

primitive-throw exception Function
Throws the exception, which must be an instance of a sub-class of <java.lang.Throwable>.

try-finally body handler Syntax
Evaluate body, and return its result. However, before it returns, evaluate han-
dler. Even if body returns abnormally (by throwing an exception), handler is
evaluated.

(This is implemented just like Java’s try-finally.)

try-catch body handler ... Syntax
Evaluate body, in the context of the given handler specifications. Each handler
has the form:

var type exp ...

If an exception is thrown in body, the first handler is selected such that the
thrown exception is an instance of the handler’s type. If no handler is selected,
the exception is propagated through the dynamic execution context until a
matching handler is found. (If no matching handler is found, then an error
message is printed, and the computation terminated.)

Once a handler is selected, the var is bound to the thrown exception, and the
exp in the handler are executed. The result of the try-catch is the result
of body if no exception is thrown, or the value of the last exp in the selected
handler if an exception is thrown.

(This is implemented just like Java’s try-catch.)

dynamic-wind in-guard thunk out-guard Function
All three arguments must be 0-argument procedures. First calls in-guard, then
thunk, then out-guard. The result of the expression is that of thunk. If thunk
is exited abnormally (by throwing an exception or invoking a continuation),
out-guard is called.

If the continuation of the dynamic-wind is re-entered (which is not yet possible
in Kawa), the in-guard is called again.

This function was added in R5RS.

7.13 Locations

A location is a place where a value can be stored. An Ivalue is an expression that refers to
a location. (The name "lvalue" refers to the fact that the left operand of set! is an lvalue.)
The only kind of lvalue in standard Scheme is a variable. Kawa also allows computed
Ivalues. These are procedure calls used in "lvalue context", such as the left operand of
set!.

Chapter 7: Extensions 35

You can only use procedures that have an associated setter. In that case, (set! (f arg
...) value) is equivalent to ((setter f) arg ... value) Currently, only a few procedures
have associated setters, and only builtin procedures written in Java can have setters.

For example:
(set! (car x) 10)
is equivalent to:
((setter car) x 10)
which is equivalent to:

(set-car! x 10)

setter procedure Function
Gets the "setter procedure" associated with a "getter procedure". Equivalent
to (procedure-property procedure ’setter). By convention, a setter pro-
cedure takes the same parameters as the "getter" procedure, plus an extra
parameter that is the new value to be stored in the location specified by the
parameters. The expectation is that following ((setter proc) args ... value)
then the value of (proc args ...) will be value.

The setter of setter can be used to set the setter property. For example
the Scheme prologue effectively does the following:

(set! (setter vector-set) vector-set!)
Kawa also gives you access to locations as first-class values:

location Ivalue Syntax
Returns a location object for the given Ivalue. You can get its value (by applying
it, as if it were a procedure), and you can set its value (by using set! on the
application). The Ivalue can be a local or global variable, or a procedure call
using a procedure that has a setter.

(define x 100)

(define 1x (location x))

(set! (1x) (cons 1 2)) ;; set x to (1 . 2)
(1x) ;; returns (1 . 2)

(define 1lc (location (car x)))

(set! (1lc) (+ 10 (1c)))

;3 x is now (11 . 2)

define-alias variable Ivalue Syntax
Define variable as an alias for Ivalue. In other words, makes it so that (location
variable) is equivalent to (location Ivalue). This works both top-level and
inside a function.

Some people might find it helpful to think of a location as a settable thunk. Others may
find it useful to think of the location syntax as similar to the C ‘&’ operator; for the ‘*’
indirection operator, Kawa uses procedure application.

Chapter 7: Extensions

7.14 Eval and Environments

eval expression [environment] Function
eval evaluates expression in the environment indicated by environment.

The default for environment is the result of (interaction-environment).

null-environment version Function
This procedure returns an environment that contains no variable bindings, but
contains (syntactic) bindings for all the syntactic keywords.
The effect of assigning to a variable in this environment (such as let) is unde-
fined.

scheme-report-environment version Function
The version must be an exact non-negative inetger corresponding to a version of
one of the Revisedversion Reports on Scheme. The procedure returns an envi-
ronment that contains exactly the set of bindings specified in the corresponding
report.
This implementation supports version that is 4 or 5.

The effect of assigning to a variable in this environment (such as car) is unde-
fined.

interaction-environment Function
This procedure return an environment that contains implementation-defined
bindings, as well as top-level user bindings.

environment-bound? environment symbol Function
Return true #t if there is a binding for symbol in environment; otherwise returns
#E.

fluid-let ((variable init) ...) body ... Syntax

Evaluate the init expressions. Then modify the dynamic bindings for the vari-
ables to the values of the init expressions, and evaluate the body expressions.
Return the result of the last expression in body. Before returning, restore
the original bindings. The temporary bindings are only visible in the current
thread, and its descendent threads.

base-uri [node] Function
If node is specified, returns the base-URI property of the node. If the node
does not have the base-URI property, returns #f. (The XQuery version returns
the empty sequence in that case.)
In the zero-argument case, returns the "base URI" of the current context. By
default the base URI is the current working directory (as a URL). While a source
file is loaded, the base URI is temporarily set to the URL of the document.

load path Function
The path can be an (absolute) URL or a filename.

load-relative path Function
Same as load, except that path is a URI that is relative to the context’s current
base URI.

Chapter 7: Extensions 37

7.15 Debugging

trace procedure Syntax
Cause procedure to be "traced", that is debugging output will be written to
the standard error port every time procedure is called, with the parameters and
return value.

untrace procedure Syntax
Turn off tracing (debugging output) of procedure.

7.16 Threads

There is a very preliminary interface to create parallel threads. The interface is similar
to the standard delay/force, where a thread is basically the same as a promise, except
that evaluation may be in parallel.

So far, only modest effort has been made i